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Abstract

A finite element (FE) mode-matching approach is presented for duct acoustics with flow and circumferentially varying

liners. The primary application of the method is the prediction of sound attenuation in turbofan inlets and bypass ducts

including the effects of liner splices. A fully numerical procedure has been developed to determine the acoustic modes in

ducts of arbitrary cross-section and mean flow profile. A numerical mode-matching method is proposed using a modified

matching technique in order to deal more accurately with liner discontinuity with flow. An analytic radiation model can

also be integrated with the mode-matching procedure in order to obtain far-field directivity for tones and broadband

multimode noise. The accuracy of the mode-matching method is demonstrated by comparison with exact solutions and

high-resolution FE solutions. The influence of non-axisymmetric liners on noise radiation is also illustrated.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

A numerical mode-matching procedure is applied to the acoustic analysis of turbofan intakes and bypass
ducts and is coupled to an analytic radiation model to predict the effect of non-uniform liners on far-field
radiation. The present method features an improved matching condition which is able to describe accurately
sound scattering by liner discontinuities with flow. A general numerical scheme is used to compute the
eigenmodes in each duct segment, which makes the method applicable to ducts of arbitrary cross-section and
with peripherally varying liners.

The expansion of the sound field in terms of modes forms the basis for many analytic and semi-analytic
methods in duct acoustics. This has many attractive features and leads to an immediate reduction in the
dimension of the problem in that the acoustic field in a prismatic two-dimensional (2-D) or axisymmetric duct
can be decomposed into modal solutions of a one-dimensional (1-D) eigenvalue problem, and similarly wave
fields in a duct of arbitrary cross-section can be expanded in terms of eigenvectors defined over a 2-D duct
cross-section. By matching expansions of this type at the interface between different uniform duct segments,
the effect of axial variations of impedance can be modelled with far fewer parameters than would be required
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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for a three-dimensional (3-D) numerical transmission analysis [1]. The downside of such an approach is that
when flow is present, it can be applied only to prismatic ducts, i.e. ducts whose cross-sectional geometry is
uniform in the axial direction. Moreover, analytic solutions are only readily available for special geometries
and flow conditions: circular, annular and rectangular ducts with uniform mean flow and liners which are
uniform in the circumferential or transverse directions. For circular and annular ducts with circumferentially
varying liner impedances, semi-analytic methods have been proposed for the duct eigenvalue problem by using
a Fourier expansion of the impedance [2,3], but these have not been demonstrated to be effective for the
high frequencies and mode orders which are typical of turbofan duct applications. A semi-analytic multimode
propagation method has also been developed which uses a rigid duct modal basis and which reduces
the transmission problem to the solution of a set of modal ordinary differential equations along the duct.
This has recently been applied to the case of a circular duct with peripherally varying liners in the absence
of flow [4].

The determination of the lined acoustic modes, even for ducts of separable geometry, is a non-trivial
exercise, particularly when flow is present. ‘Surface’ modes exist for particular ranges of wall impedance, and
the development of robust methods which are able to resolve all of the modes all of the time is not a simple
matter [5]. When the mean flow in the duct is non-uniform the task becomes more difficult and some form of
numerical procedure must be used, either to solve an eigenvalue relationship numerically, or to solve directly
an equivalent discrete problem. In the latter instance, a finite element (FE) representation of the duct cross-
section is an obvious choice [6].

FE models for calculating the eigenmodes in ducts of arbitrary cross-section and with peripherally varying
liners were first proposed in the early 1980s [7]. These were based on the linearized Euler equations. Their
application was limited to low frequencies and coarse meshes by the computational resources available at that
time. In the current article this general approach is revisited. A weak form of the convected wave equation
forms the basis for the current FE eigenvalue formulation. It is found that complete sets of propagating
eigenmodes can be obtained at modest computational cost for frequencies and flow conditions which are
characteristic of turbofan intake and bypass ducts. This approach is presented in Section 2 of the current
article.

In Section 3, a new Galerkin mode-matching procedure is proposed which deals correctly with axial
impedance discontinuities. This method is coupled to an analytic radiation model in Section 4, and in Section
5 it is applied to the prediction of scattering and attenuation in lined duct segments with peripherally varying
impedances. In particular, the method is used to assess the effect of liner length and liner-splice thickness on
turbofan intake and bypass ducts in which hard axial splices are present.

The use of a modal representation within the duct lends itself also to integration with analytic radiation
models at the duct exit. As shown in Section 4, it is then possible to characterize the influence of the liners in
terms of the sound radiated to the far field.
2. The FE eigenvalue problem

A fully numerical procedure has been developed to determine the acoustic modes in ducts of arbitrary cross-
section and mean flow profile. The starting point for the formulation is a weak variational statement of the
Pridmore-Brown equation written for ducts of arbitrary cross-section and carrying a parallel subsonic mean
flow of arbitrary profile. An FE method is then devised to solve the eigenvalue problem.
2.1. Formulation of the eigenvalue problem

Consider a prismatic duct with axis z and cross-section S, see Fig. 1. The formulation of the eigenvalue
problem and its FE implementation is presented for the general case of a sheared flow in which the axial flow
velocity w0 varies with the transverse coordinates x and y, i.e. w0 ¼ w0ðx; yÞ (results will be presented in this
article only for the case of an axial mean flow w0 which is constant across the duct). The flow is assumed to be
adiabatic and isentropic and of uniform temperature, so that the mean sound speed c0 and density r0 are
constant over the duct. It is not difficult to show that in such circumstances, the complex amplitude of the
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Fig. 1. (a) Schematic of the prismatic duct with axis z and cross-section S and (b) schematic of the segmented duct composed of several

axial segments.
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pressure perturbation in the duct, pðx; y; zÞ satisfies Pridmore-Brown’s equation

ioþ w0
q
qz

� �
1

c20
ioþ w0

q
qz

� �2

p� Dp

" #
þ 2

q
qz
ðr?w0 � r?pÞ ¼ 0, (1)

where r? is the gradient operator in the cross-section of the duct. In the case of uniform flow, the last term is
zero, and the above equation reduces to the convected wave equation:

1

c20
ioþ w0

q
qz

� �2

p� Dp ¼ 0.

In either event, the Myers boundary condition is applied at the duct walls:

qp

qn
¼

r0
�ioZ

ioþ w0
q
qz

� �2

p, (2)

where Z is the wall impedance which can vary arbitrarily around the duct wall but which is uniform in the
axial direction. Solutions are now sought of the form

pðx; y; zÞ � Pðx; yÞe�iklz,

where k ¼ o=c0 is the free-field wavenumber and kl ¼ kz is the axial wavenumber of the mode. Eq. (1) can
then be written

ð1� lM0Þ½D?Pþ k2
½ð1�M0lÞ

2
� l2�P� þ 2l½r?M0 � r?P� ¼ 0 with D? �

q
qx2
þ

q
qy2

, (3)

where M0 ¼ w0=c0 is the flow Mach number. From the boundary condition (2), one gets

qP

qn
¼

r0c0k

iZ
ð1�M0lÞ

2P. (4)

Eqs. (3) and (4) represent an eigenvalue problem defined on the duct cross-section S with eigenvalue l and
eigenvector P. In order to obtain numerical approximations of this eigenvalue problem, it is recast as a
variational formulationZ

S

½ð1� lM0Þ½k
2W ½ð1�M0lÞ

2
� l2�P�r?W � r?P� þ 3lWr?M0 � r?P�dS

þ

I
G

W
r0c0k

iZ
ð1�M0lÞ

3PdG ¼ 0; 8W , (5)

where W is a trial function and G ¼ qS is the boundary of S. The overbar denotes the complex conjugate.

2.2. The discrete problem

The variational formulation is discretized by applying the FE method. The duct cross-section S is
approximated by a mesh of FEs (examples are given in Fig. 2). The mode shape P and the trial function W are
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Fig. 2. Examples of finite element meshes used for the validation of the eigenvalue problem. (a) Structured mesh; (b) Unstructured mesh.
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interpolated on the mesh:

Pðx; yÞ ¼ Nðx; yÞpn; W ðx; yÞ ¼ Nðx; yÞwn, (6)

where N is a row vector containing the global interpolation functions and pn and wn are the vectors of the
nodal values of P and W, respectively. It is convenient before proceeding further to define Mach weighted
acoustic ‘mass’, ‘stiffness’ and ‘boundary impedance’ matrices for the duct cross-section and its boundary.
These are given by

MðnÞ ¼

Z
S

ðM0Þ
n
½NTN�dS; KðnÞ ¼

Z
S

ðM0Þ
n qNT

qx

qN
qx
þ

qNT

qy

qN
qy

� �
dS,

ZðnÞ ¼

Z
G

r0c0k
iZ
ðM0Þ

n
½NTN�dS,

for n ¼ 0; 1; 2; 3. For the case of uniform mean flow M0ðx; yÞ ¼M0 (const.) each of these matrices satisfies the
identity: ½ �ðnÞ �Mn

0½ �
ð0Þ. When non-uniform flow is present we must define also a shear coupling matrix S given

by

S ¼

Z
S

NT qM0

qx

qN
qx
þ

qM0

qy

qN
qy

� �� �
dS.

This is zero for the case of uniform flow. When expressions (6) are substituted into the variational statement
(5) we obtain an algebraic eigenvalue problem for l of the form

ðA0 þ lA1 þ l2A2 þ l3A3Þpn ¼ 0, (7)

where A0; . . . ;A3 are constant n� n matrices:

A0 ¼ k2Mð0Þ � Kð0Þ þ Zð0Þ,

A1 ¼ �3k2Mð1Þ þ Kð1Þ � 3Zð1Þ þ 3S,

A2 ¼ k2
ð3Mð2Þ �Mð0ÞÞ þ 3Zð2Þ,

A3 ¼ �k2
ðMð3Þ þMð1ÞÞ � Zð3Þ.

Eq. (7) can be re-written as a linear eigenvalue problem in l of dimension 3n� 3n and solved numerically to
give 3n eigenvalues and eigenvectors. These include both acoustic and hydrodynamic modes.1 Some
simplification is possible when the mean flow is uniform or zero.
1When sheared flow is present there is no clear distinction between acoustic and vortical modes but some eigensolutions are

predominantly irrotational and acoustic in nature while some are predominantly rotational and convected with the mean flow.
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In the case of zero mean flow, M0ðx; yÞ � 0, the discrete eigenproblem (7) reduces to a linear eigenproblem
in l2:

ðB0 þ l2B2Þpn ¼ 0, (8)

where

B0 ¼ k2Mð0Þ þ Zð0Þ � Kð0Þ and B2 ¼ �k2Mð0Þ.

This has n eigensolutions giving axial wavenumbers l which occur in conjugate pairs corresponding to
upstream and downstream propagating modes.

When the mean flow is non-zero but uniform, M0ðx; yÞ �M0 constant, a factor ð1� lM0Þ can be removed
from Eq. (7) to give a modified expression:

ð1� lM0ÞðC0 þ lC1 þ l2C2Þpn ¼ 0,

where the matrices Cn ðn ¼ 0; 1; 2Þ are given by

C0 ¼ k2Mð0Þ � Kð0Þ þ Zð0Þ,

C1 ¼ �2M0ðk
2Mð0Þ þ Zð0ÞÞ,

C2 ¼ k2
ðM2

0 � 1ÞMð0Þ þM2
0Z
ð0Þ.

The factor ð1�M0lÞ gives multiple roots l ¼ 1=M0, which correspond to hydrodynamic disturbances which
are convected with the mean flow. The acoustic modes are then obtained from the remaining factor, i.e. by
solving

ðC0 þ lC1 þ l2C2Þpn ¼ 0. (9)

The algebraic eigenvalue problem defined by Eq. (7) and the special cases (8) and (9) are solved as linear
matrix eigenvalue problems in l or l2. The implicitly restarted Arnoldi method is used as implemented in the
ARPACK solver designed and optimized for large-scale sparse eigenvalue problems [8].

2.3. Ordering of the eigensolutions

Formulation (5) based on Eq. (3) does not make any distinction between modes propagating in the positive
and negative axial directions. But for the mode-matching method described below, it is important to
distinguish the positive modes from the negative ones. For acoustic modes, this is done using two properties of
the modes. The first argument is that the amplitude of the acoustic perturbations should decrease away from
the source. Therefore, the sign of ImðkzÞ indicates the direction of propagation of the mode: ImðkzÞo0 for
positive modes and ImðkzÞ40 for negative modes. For modes with real wavenumbers, the direction of the
power flux indicates the direction of propagation. The axial power flux generated by a single mode is the
following:

P ¼
r0o

2

2c0
ð1�M2

0Þ
kz

k
þM0

� � Z
S

jPðx; yÞj2 dS.

Therefore the propagation direction is given by the term in brackets and a mode is propagating in the positive
direction if kz4� kM0=ð1�M2

0Þ.
The eigenvalue problem yields a set of positive modes Pþ with wavenumbers kþz and a set of negative modes

P� with wavenumbers k�z . The systematic ordering of the eigensolutions for ducts of arbitrary cross-section is
not straightforward, particularly when many propagating modes are present. For example, the descriptor
ðm; nÞ which defines a mode by its radial order m and azimuthal order n ((22, 1) say for the first radial mode of
azimuthal order 22) is only meaningful for axisymmetric ducts with axisymmetric liners. In the current study a
general approach is adopted whereby modes are ordered on the basis of their cut-on ratio

Z ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ½M0 þ ð1�M2

0Þkz=k�2
q

j, (10)
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this being defined in the usual way so that Z ¼ 1 corresponds to the transition from a propagating to an
evanescent mode in a hard-walled duct. In a lined duct there is no sudden transition, but the cut-on ratio is still
a strong indicator of whether a mode contributes significantly to acoustic power in the duct.

For lined duct with flow, one of the surface waves can be considered as an instability [5], although there is
some debate as to whether this classification is mathematically correct [9]. Therefore it needs to be dealt with
separately as the criteria used above for the acoustic modes does not apply.

In addition, when non-uniform flow is present the eigenvalue problem (7) also yields hydrodynamic modes
which are convected with the mean flow. Some of these may also be unstable and correspond to
Kelvin–Helmholtz instabilities of the mean flow profile. This case is not considered in the present paper, and
results are presented for uniform mean flows only.

2.4. Results and validation

To validate the numerical eigenvalue solver, an axisymmetric problem is considered so as to compare with
exact solutions given by analytic methods. The duct is annular with inner radius R1 ¼ 0:7m and outer radius
R0 ¼ 1m. The specific impedance is Z ¼ 2� i for the inner wall and Z ¼ 2þ i for the outer wall (the specific
impedance is non-dimensional with respect to the local values of density and sound speed). The mean flow is
uniform with Mach number M0 ¼ 0:4, local sound speed 340m=s and local density 1:23 kg=m3. The
Helmholtz number is kR0 ¼ 15. The analytical values of the wavenumbers are obtained by solving the
characteristic equation of the problem using a tracking method originally proposed by Eversman [10] and
recently refined by Rienstra [5]. The wavenumbers of the eigensolutions are tracked in the complex plane as
the impedance is varied from a hard-walled case (where all possible values of the wavenumber are easily
found) to the impedance of interest. Rienstra has further refined this technique by defining guidelines so as to
find all possible eigensolutions, including surface waves. The present implementation of this method is due to
McAlpine et al. [11].

A series of structured and unstructured meshes with quadratic triangular elements is used to assess the
influence of the mesh resolution on the accuracy of the numerical eigenvalues (examples of meshes are given in
Fig. 2). The mesh resolution is characterized by a number of points per wavelength defined as c0=f =h where f is
the frequency and h is the typical inter-nodal distance in a given mesh. The accuracy of the numerical model is
assessed by considering the relative error on the axial wavenumber jkz � kz;exj=k where kz;ex is the exact value.

The relative error is plotted as a function of the cut-on ratio of the modes and for different mesh resolutions
in Figs. 3 and 4 for structured and unstructured meshes. As a general trend, the error grows with the cut-on
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Fig. 3. Relative error on the wavenumbers with structured meshes for (a) the positive modes and (b) the negative modes. Mesh resolution

is 12.9 (dot-dashed line), 17.3 (dashed line) and 21.6 (solid line) points per wavelength.
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ratio of the mode. This is obviously due to the fact that the mode shapes of higher order modes are more
complex and less accurately resolved on the FE meshes. For well cut-on modes, very accurate results can be
obtained with relatively coarse meshes. Furthermore, for all the modes the numerical error is also consistently
reduced when the mesh resolution is increased. This is shown more clearly in Fig. 5 where the relative error for
a particular mode is plotted against the number of points per wavelength. The numerical wavenumber
converges smoothly to the exact value with a fourth-order rate of convergence. In Fig. 3, it can be noted that
with structured meshes the numerical error can vary significantly from one mode to the next. This is due to the
fact that for some modes the azimuthal symmetry of the mesh matches that of the mode. As one might expect,
this effect is less pronounced with unstructured meshes.



ARTICLE IN PRESS
G. Gabard, R.J. Astley / Journal of Sound and Vibration 315 (2008) 1103–11241110
3. Mode matching at liner discontinuities

Modal scattering can be modelled at the interface between two prismatic sections with different
circumferential liner distributions by matching modal expansions across the liner discontinuity. The numerical
eigensolutions described in the preceding section form the modal expansions in each duct segment. The
matching conditions are obtained from a variational statement for the field equations and impedance
boundary condition over a vanishingly small control volume which includes the liner discontinuity. This gives
a finite contribution to the matching conditions from the bounding contour of this interface for a non-zero
axial slip velocity at the lined wall. This contribution has been neglected in previous mode-matching schemes,
but has a discernible effect on the matched solution, particularly on the reflected components.
3.1. Formulation of the problem

Consider a prismatic duct composed of several axial segments of finite length, see Fig. 1. These have the
same cross-section but different circumferentially varying impedances. We seek to establish appropriate
matching conditions for solutions on either side of an interface between two such sections. Initially we will
assume that the axial change in liner impedance occurs over a finite distance �� on either side of the matching
plane at z ¼ 0 as indicated in Fig. 6. Matching conditions will be established for this finite transition region
and the limit taken as �! 0 to simulate an abrupt discontinuity at z ¼ 0. The cross-section of the duct at
z ¼ 0 defines an area S bounded by a contour G. In regions (1) and (2) on either side of the transition region,
the complex acoustic pressure and cartesian velocity amplitudes are taken to be p1; u1; v1; and w1 for zp� �,
and p2; u2; v2 and w2 for zX� �. These solutions can be written as modal expansions in each region. The
acoustic pressure amplitudes, p1 and p2, for example, can be approximated by truncated series:

p1ðx; y; zÞ ¼
XN

a¼1

½Aþ1;ae
�ikþ1;azPþ1;aðx; yÞ þ A�1;ae

�ik�1;azP�1;aðx; yÞ� with zo� �, (11)

p2ðx; y; zÞ ¼
XN

a¼1

½Aþ2;ae
�ikþ2;azPþ2;aðx; yÞ þ A�2;ae

�ik�2;azP�2;aðx; yÞ� with z4�, (12)

where A�m;a; are modal coefficients, k�m;a are axial wavenumbers and P�m;a are transverse eigenfunctions in
regions (1) and (2). Note that the modes are numbered with a single index a. The more usual arrangement of
numbering modes by using separate azimuthal and radial orders is not applicable when the impedance varies
around the duct perimeter and the modes are no longer separable in r and y. In the current scheme the index a
is obtained by ranking the modes on the basis of the cut-on ratio (10).
z
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Fig. 6. Matching at a liner discontinuity, geometry and control volume.
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3.2. The matching scheme

At all points within the duct, and specifically in matching region ð��ozo�Þ, the pressure and velocity
amplitudes, pðxÞ and uðxÞ, of the acoustic disturbance satisfy the time harmonic linearized momentum and
continuity equations for inviscid, parallel flow:

iouþ w0
qu
qz
þ

1

r0
rp ¼ 0 ðmomentumÞ,

iopþ w0
qp

qz
þ r0c20r � u ¼ 0 ðcontinuityÞ.

Here, w0ðxÞ; c0 and r0 denote the axial velocity, sound speed and density of the mean flow. c0 and r0 are
constant over the duct cross-section. In formulating the matching conditions we consider only the axial
momentum equation and the continuity equation, and write these in ‘conservation’ form as

iouþ r � 0; 0;w0wþ
1

r0
p

� �
¼ 0, (13)

iopþ r � ðr0c20u;r0c
2
0v;w0pþ r0c20wÞ ¼ 0, (14)

where uðxÞ has components ðu; v;wÞ. We consider solutions of these equations within a region V, bounded by
the planes S� and Sþ at z ¼ ��, and bounded also by a portion of the cylindrical duct wall denoted by Sz. The
impedance boundary condition on Sz is given by

u � n ¼ Ap�
iw0

o
qðApÞ

qz
on Sz, (15)

where the admittance is given by A ¼ 1=Z. The impedance and the associated admittance are not specified
precisely on Sz but vary continuously so that Z ¼ Z1 at z ¼ �� and Z ¼ Z2 at z ¼ þ�. The acoustic pressure
and normal velocity are continuous at the upstream and downstream boundaries of the control region so that

p ¼ p1; w ¼ w1 on S�, (16)

p ¼ p2; w ¼ w2 on Sþ. (17)

Eqs. (13) and (14) are now multiplied by a continuous weighting function W ðx; yÞ and integrated over V.
Green’s theorem is applied to the resulting integrals in the usual way and boundary conditions (15)–(17) are
substituted in the resulting integral statement. This yields a variational formulation which states that any
solution of Eqs. (13) and (14) in V which satisfies conditions (15)–(17) on its boundary, satisfies also the
integral statements thatZ

V

ðioWwÞdV þ

Z
Sþ

W w0w2 þ
1

r0
p2

� �
dS �

Z
S�

W w0w1 þ
1

r0
p1

� �
dS ¼ 0 (18)

and Z
V

ðioWpÞdV þ

Z
Sþ

W ðw0p2 þ r0c
2
0w2ÞdS �

Z
S�

W ðw0p1 þ r0c20w1ÞdS

þ

Z
Sz

r0c
2
0W Ap�

iw0

o
q
qz
ðApÞ

� �
dS ¼ 0, (19)

for all admissible (i.e. continuous) test functions W ðx; yÞ. To obtain the correct matching condition across a
liner discontinuity we take the limit of the above expressions as �! 0. In doing so, we assume that p and w are
finite or have weak singularities of order r�1=2 on G. This ensures that the integrals over V in the above
equations vanish as �! 0. Statement (18) then givesZ

S

w0W ðw2 � w1ÞdS þ

Z
S

1

r0
W ðp2 � p1ÞdS ¼ 0. (20)
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Eq. (19) must be treated more carefully. The final integral is first rewritten asZ
Sz

r0c
2
0WAp�

q
qz

iw0r0c20
o

WAp

� �� �
dS

and the second term is integrated explicitly in z to giveZ
Sz

�
q
qz

iw0r0c20
o
ðWApÞ

� �
dS ¼ �

Z
Gþ

iw0r0c
2
0

o
ðWA2p2ÞdGþ

Z
G�

iw0r0c
2
0

o
ðWA1p1ÞdG,

where G� are contours along the perimeter of the duct at z ¼ ��. When this is substituted into expression (18)
and the limit taken as �! 0, we obtainZ

S

r0c20W ðw2 � w1ÞdS þ

Z
S

w0W ðp2 � p1ÞdS ¼

Z
G

iw0r0c20
o

W ðA2p2 � A1p1ÞdG. (21)

Eqs. (20) and (21) are the correct weighted conditions for matching acoustic solutions across an axial liner
discontinuity at z ¼ 0. Some special cases are of particular interest.

3.2.1. Zero mean flow

In the absence of flow (w0 ¼ 0) the term on the right-hand side of Eq. (21) vanishes and it is not difficult to
show that conditions (20) and (21) reduce toZ

S

W ðp2 � p1ÞdS ¼ 0 and

Z
S

W ðw2 � w1ÞdS ¼ 0.

These impose continuity of pressure and normal velocity over the duct area S in a conventional ‘weighted
residual’ sense without reference to the impedance boundary condition. These are the matching conditions
which are in use currently in most mode-matching schemes with and without flow.

3.2.2. Uniform mean flow

When the flow in the duct is uniform, the axial flow velocity w0 can be removed from the integrals over S. It
is then not difficult to show that expressions (20) and (21) reduce toZ

S

W ðp2 � p1ÞdS ¼ �
iM2

0

1�M2
0

r0c20
o

Z
G

W ðA2p2 � A1p1ÞdG, (22)

Z
S

W ðw2 � w1ÞdS ¼
iM0

1�M2
0

c0

o

Z
G

W ðA2p2 � A1p1ÞdG. (23)

The presence of non-zero terms on the right-hand side of these expressions shows that integrable singularities
of acoustic pressure can occur at impedance discontinuities when flow is present, and must be taken into
account when solutions are matched across such interfaces. A similar surface contribution to the integrated
energy flux has been identified by Eversman in an analysis of the acoustic power in a lined flow duct and
shown to make a small but significant contribution to the total acoustic power [12,13].

As illustrated by the present analysis and also by the results to be presented in Section 3.5, the behaviour of
the acoustic field at the liner discontinuity is particularly important. Rienstra and Peake have solved the
problem of the transition from hard to soft wall in a circular duct with uniform flow [14,15]. Their analysis
shows that the use of a Kutta or no-Kutta condition at the discontinuity can affect significantly the modal
scattering. It was also found that the causality of the solution and the existence of an unstable hydrodynamic
surface wave are directly related to the Kutta condition.

A related issue is the choice of the variables used to represent the acoustic field (see for instance Ref. [16]).
The nature of the singularity observed at the liner discontinuity is different depending on the acoustic variable
being pressure, velocity potential, etc. Using pressure and velocity in the standard matching conditions implies
that these quantities are sufficiently well behaved to apply the matching, this assumption might in turn
constrain the behaviour of the acoustic solution at the liner discontinuity. Although how one should model
this transition is still an open question, one should note that the present method based on the conservation of
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mass and momentum is clearly more general than the standard approach using continuity of acoustic pressure
and velocity.

Unfortunately, there is as yet no definite and complete description of the physical mechanisms taking place
at the transition from hard to soft surfaces with flow. And to make matters worse, the physical processes
involved in such a transition are likely to be different if the liner is a porous material or a set of Helmholtz
resonators behind a perforated sheet.

3.3. Application to modal solutions

Modal solutions are matched across a liner discontinuity by substituting truncated modal expansions (11)
and (12) into expressions (22) and (23). This gives a set of algebraic equations

X
Aþ2

A�1

 !
¼ Y

Aþ1

A�2

 !
, (24)

with

X ¼
Pþ2 �P�1

Mþ2 �M�1

" #
; Y ¼

Pþ1 �P�2

Mþ1 �M�2

" #
,

and where the sub-matrices M�1;2 and P�1;2 have components

ðM�n Þa;b ¼

Z
S

w0 þ c20
k�z;n;b

o� w0k
�
z;n;b

 !
W aP

�
n;b dS �

Z
G

iw0r0c
2
0

o
W aAnP�n;b dG with n ¼ 1; 2,

ðP�n Þa;b ¼

Z
S

oW aP�n;b

r0ðo� w0k
�
z;n;bÞ

dS with n ¼ 1; 2.

The choice of the trial function W a is important. One possibility is to use the modes of the corresponding
hard-wall duct. Although these modes form an orthogonal basis, it was found that this choice of trial
functions leads to poorly conditioned matrices X which in turn render the solutions of Eq. (24) inaccurate. It is
preferable to use different trial functions for M�n and P�n so as to maximize the conditioning of the matrices on
the diagonal of X (namely Pþ2 and M�1 ). This is achieved by using Pþ2;b and P�1;b as trial functions for P�n and
M�n , respectively.

The matrices X and Y are calculated using the FE approximations of the mode shapes and wavenumbers.
Compared to the eigenvalue analysis the matching requires only a small fraction of the computational
resources used to solve the eigenvalue problems (7) and (8).

3.4. Implementation for multiple segments

For a duct composed of several sections, one must concatenate a number of matching conditions of type
(24), one for each liner discontinuity. Consider for instance a duct composed of three sections with an inlet
plane at z ¼ z1, an exhaust plane at z ¼ z3 with two internal liner interfaces at z ¼ z12 and z ¼ z23. In this case,
two linear systems of equations similar to Eq. (24) must be included in the model. These are:

X12

Eþ2 ðz12ÞA
þ
2

E�1 ðz12ÞA
�
1

 !
¼ Y12

Eþ1 ðz12ÞA
þ
1

E�2 ðz12ÞA
�
2

 !
, (25)

X23

Eþ3 ðz23ÞA
þ
3

E�2 ðz23ÞA
�
2

 !
¼ Y23

Eþ2 ðz23ÞA
þ
2

E�3 ðz23ÞA
�
3

 !
, (26)

where Eq. (25) corresponds to the interface between Sections 1 and 2, and Eq. (26) corresponds to the interface
between Sections 2 and 3. The amplitudes A�n as defined in Eqs. (11) and (12) represent the modal pressure
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amplitudes at z ¼ 0. But the interfaces are located at z ¼ z12 and z ¼ z23. So we have introduced the matrices
E�n ðzÞ to account for the propagation of the modes along the duct. These diagonal matrices are defined by

ðE�n ðzÞÞaa ¼ expð�ik�z;n;azÞ.

The linear equations (25) and (26) are not solved directly for the mode amplitudes A�n since these algebraic
systems are generally ill conditioned. This stems from the fact that the coefficients in the matrix E�n ðzÞ can be
either very large or very small depending on the imaginary part of the mode wavenumbers. This results in
E�n ðzÞ being close to singular and a direct inversion of Eqs. (25) and (26) is either impossible or prone to round-
off error. A standard iterative method is used to avoid this problem [17].

The solution of the linear systems Eqs. (25) and (26) gives the scattering matrix D of the duct defined by the
relationship

A�

Bþ

� �
¼ D

Aþ

B�

 !
with D ¼

DAA DAB

DBA DBB

" #
, (27)

where A� are the mode amplitude at the duct inlet while B� denote the mode amplitudes at the exhaust.

3.5. Results and validation

To validate the FE mode-matching scheme, it is tested against ACTRAN, a commercial code for flow
acoustics [18]. The test case used for this comparison is an annular duct composed of three 1m long segments.
The inner and outer radii of the duct are R1 ¼ 0:7m and R0 ¼ 1m, respectively. The first and third segments
have hard walls while the second segment is lined with a specific impedance Z ¼ 2þ i on the outer wall and
Z ¼ 2� i on the inner wall. The flow Mach number is M0 ¼ 0:4. The fluid stagnation sound speed and density
are 340m=s and 1:23 kg=m3. The Helmholtz number is kR0 ¼ 15. The problem being axisymmetric, it is
possible to obtain a reference solution for the 3-D problem by using ACTRAN with a high resolution
axisymmetric FE mesh.

First, the benefit of using the modified matching conditions based on the conservation of mass and
momentum is demonstrated. To that end the mode-matching model is used to predict the transmission loss
(i.e. the acoustic power absorbed by the liner) which is generally the quantity of practical interest for
engineering design of duct liners. A structured mesh with an average of 17.3 points per wavelength is used and
100 modes are included in the mode matching. For each incident mode at the duct inlet Fig. 7 shows the
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Fig. 7. Modal transmission loss for (a) the first-order radial modes and (b) the second-order radial modes. Solid line: reference solution.

Dashed line: standard matching conditions. Dot-dashed line: modified matching conditions.
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transmission loss given by the reference solution and by the standard and modified mode-matching schemes.
While the modified matching scheme yield good results with an error remaining below half a decibel for all the
modes, the standard matching condition based on the continuity of pressure and axial velocity exhibit
relatively large error (more than 1 dB), especially for the higher order modes.

This issue is also clearly illustrated by comparing the pressure amplitude along the duct wall. In Fig. 8 the
sound pressure level along the outer wall is plotted for two different incident modes, the plane wave and the
mode ð13; 0Þ. Again the difference between the standard and modified matching is clearly visible. The results
from the modified matching follow closely the reference solution whereas the pressure profile obtained with
the standard matching deviates significantly from the reference solution especially in the first segment where
errors of more than 1 dB can be observed. A particular feature of the solutions is the discontinuity observed at
the interfaces on both side of the line segment. In presence of flow, a discontinuity in impedance at the wall
induces a singular pressure field in the vicinity of the discontinuity. This singular solution is reasonably well
captured by the modified matching but the standard matching scheme is unable to resolve properly the
behaviour of the solution in the vicinity of the interfaces.

The accuracy of the numerical mode-matching method is now assessed with respect to the number of modes
used for the matching. The relative error on pressure along the outer wall jpðzÞ � pexðzÞj=jpexðzÞj where pexðzÞ is
the reference solution, is calculated using the modified matching conditions, see Fig. 9. Again the plane wave
and the mode ð13; 0Þ are used as sources at the duct inlet. In each case only modes with the same azimuthal
order as the source are used in the mode matching. The number of radial modes included in the matching is
varied from 2 to 5 to assess the convergence of the method. The numerical error decreases consistently as more
modes are included in the matching. Large errors are observed at the interfaces between the lined and hard-
walled segments. The behaviour of the solution close to the interfaces is controlled by the amplitudes of the
high-order modes. Since these modes are well cut-off and decay rapidly, their influence is limited to the vicinity
of the interface and their contributions at the inlet and exhaust of the duct are negligible.

Fig. 9 represents a particularly stringent assessment of the numerical error since one is generally interested
in the modal power at the duct exhaust using the dB scale. So a different assessment of the convergence is
carried out by considering the error on the transmission loss, see Fig. 10. In this calculation all the modes
obtained from the eigenvalue problem are included in the mode matching (that is all the azimuthal orders are
included at the same time). There is a total of 50 cut-on modes for this test case and the number of modes
included in the matching is varied from 100 to 50. It is observed that there is very little variation in the
transmission loss as the number of modes included in the matching is reduced. In fact, even when only the
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Fig. 10. Error on the modal transmission loss in dB for (a) the first-order radial modes and (b) the second-order radial modes. Number of

mode included in the matching: 80 (dotted line), 70 (solid line), 60 (dot-dashed line) and 50 (dashed line).
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cut-on modes are used the mode matching is able to predict the transmission within 0.5 dB. This demonstrates
the robustness of the proposed FE mode-matching technique.

4. Noise radiation to the far field

Studies of liner performances are often limited to in-duct propagation and assess the power loss achieved by
different liner configurations. But it is important to characterize these performances in terms of reduction of
the noise radiated out of the duct to the far field. By integrating the mode-matching method with a radiation
model, it is possible to obtain a simple engineering tool for investigating directly how the liner distribution
influences the noise in the far field.
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The radiation model used in the present work is an analytic solution for the sound radiation from a semi-
infinite jet pipe and it is an extension of the work by Munt [19,20] and Rienstra [21]. Only the main features of the
model are outlined in this section, see Ref. [22] for technical details. The configuration, described in Fig. 11, is that
of a semi-infinite circular duct with an infinite center body. The duct carries a jet described as a uniform, axial,
steady flow with velocity w0, sound speed c0 and density r0. The jet is surrounded by an ambient flow which is
also a uniform, axial, steady flow but with different properties: velocity w1, sound speed c1 and density r1. The
Mach number of the ambient flow is denoted M1 ¼ w1=c1. For each normal mode of the duct, this analytic
solution provides both the directivity functions in the far field and the reflection coefficients at the duct exhaust.

4.1. Far-field directivity

The sound radiated in the far field can be described as the sum of contributions from each outgoing mode
Bþmn at the duct exhaust. Each mode produces a different directivity patterns in the far field. It can be shown
that the pressure in the far field reads (see Fig. 12 for a definition of the spherical coordinates)

pðR; y;jÞ ¼
1

R

X
m;n

BþmnDmnðjÞeioRSðjÞ=c0þimy, (28)

where DmnðjÞ is the directivity function of the mode ðm; nÞ for a unit pressure mode amplitude. These
directivity patterns depend on the duct geometry, the mode itself and the properties of the flow inside and
outside the duct, in our case these are the jet properties ðr0; c0;w0Þ and ambient flow properties ðr1; c1;w1Þ.
The factor SðjÞ accounts for the wavefront stretching introduced by the ambient mean flow:

SðjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

1sin
2j

q
�M1 cosj

1�M2
1

.
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4.2. Reflection coefficients

As sound propagates out of the duct a part of the acoustic energy is reflected into the duct since there is a
change in acoustic impedance at the duct exhaust plane. These reflections depends on the properties of the flow
outside the duct and can be described by a reflection matrix R relating the reflected modes B� to the outgoing
modes Bþ:

B� ¼ RBþ. (29)

In practice the reflections at a bypass duct exhaust at operating conditions are marginal and can be
neglected. This is due to the relatively high frequency and the high order of the modes considered (kR ¼ 30
and m ¼ 26 for instance).

4.3. Integration with the mode-matching method

To integrate the radiation model with the mode-matching method we assume that the duct is not lined at the
exhaust plane. Although the numerical eigenvalue solver can be used to obtain the modes in a hard-wall
section, it is preferable to derive these modes analytically in order to facilitate the integration with the
radiation model. This is because, even for a hard-walled duct, the canonical modes ðþm; nÞ and ð�m; nÞ are not
obtained directly with the numerical method. Instead it yields linear combinations of the modes ðþm; nÞ and
ð�m; nÞ which makes the integration with the radiation model more difficult to implement.

The first step is to combine the scattering matrix of the duct with the reflection coefficients. By introducing
Eq. (29) in Eq. (27), it is straightforward to derive

Bþ ¼ TAþ with T ¼ ðI�DBBRÞ
�1DBA, (30)

where T is the transmission matrix of the duct and I denotes the identity matrix. While the scattering matrix
depends solely on the duct properties, the transmission matrix depends also on the ambient flow since it takes
the reflections at the duct exit into account.

4.4. Comments on the radiation model

An important aspect of radiation model is the presence of the vortex sheet separating the jet and the
ambient flow. This vortex sheet emanates from the lip of the outer duct at r ¼ R0 and z ¼ 0. The velocity
potential can be discontinuous across the vortex sheet and this discontinuity represents vortices (with zero
thickness) shed from the duct lip and convected by the mean flow. This mechanism of vorticity shedding is an
additional degree of freedom of the system and it has to be specified by describing the behaviour of the
solution at the duct edge (in mathematical terms, an edge condition is required so that the discontinuity of the
solution across the vortex sheet is uniquely defined). This is the role of the Kutta condition which states that
all the available vorticity is shed from the duct lip. In that case, the pressure is finite at the edge. The opposite
situation is when no vorticity is shed from the duct lip. In that case, the pressure is singular but integrable at
the edge. In practice, the situation is intermediate with only a limited amount of vorticity shed from the duct.
In the results presented below, the Kutta condition is used since this is the most common edge condition used
for exhaust problems. It is important to account properly for the vorticity shedding since it modifies the energy
balance of the system and it acts either as a source or a sink of acoustic energy [23].

When the jet properties are different from that of the ambient flow, acoustic waves are refracted by the
impedance mismatch across the vortex sheet. For exhaust problem, the acoustic energy is deviated away from
the jet axis and this produces a cone of silence along the jet direction.

With a flow mismatch, a crucial issue is that the vortex sheet is unstable. An instability wave growing
exponentially in the stream-wise direction is triggered by the acoustic waves. This instability wave represent
the early growth of the shear layer. But its exponential growth is an artifact of the linear model used for the
acoustic waves. In practice the instability waves is saturated by nonlinear effects which results in the formation
of vortices and the growth of the shear layer thickness (an aspect which is also not included in the present
model since the vortex sheet has a constant zero thickness). There is an ongoing debate on whether this linear
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instability wave should be included in the solution [24,25]. The main argument for including the instability
wave is that one has to include it in order to obtain a causal solution. Therefore, in the present work, the
instability wave is included in the solution (yet it is not present in the far-field directivity function Dmn used in
Eq. (28) as it is not a genuine acoustic field).
5. Application to bypass duct liners

The mode-matching method is now used to perform a parametric study of the influence of a hard patch on
the wall of a lined bypass duct. Hard patches are small areas of a lined surface where the acoustic treatment
has been removed either for design or for maintenance purposes. Hard patches can be due to the presence of
other components of the engine that prevent the use of liner in some areas of the bypass duct. Maintenance
also requires the removal of small parts of the liners which are then replaced by repair patches. Hard patches
are detrimental to the performance of liners as they reduce the area of treated surfaces. They also introduce
significant modal scattering by redistributing the acoustic energy onto low-order modes which are less
attenuated.

Non-dimensional parameters are used for this test case with the outer radius of the duct, the local sound
speed and density as reference values. To represent the bypass duct of a real engine, we consider a straight
annular duct with hub-tip ratio 0.78 and length 3. The flow inside the duct is uniform with Mach number
M0 ¼ 0:447. For the ambient flow, the Mach number is M1 ¼ 0:219, the local density and local sound speed
are 1.04 and 0.98. The duct is composed of three segments, see Fig. 13. The first and last segments have length
0.5 with hard walls. In the middle segment, the inner and outer walls of the duct are lined. The Helmholtz
number is 15.7 and the liner specific impedance is Z ¼ 2� i.

The mode-matching procedure is used to investigate the influence of the insertion of a rectangular hard
patch on the outer wall of the middle segment as shown in Fig. 13. The area of the patch is kept constant and
is taken to be 5% of the outer wall area in the middle segment. The aspect ratio of the patch is characterized by
its width given in percent of the outer duct perimeter and is varied from 100% to 5%. With a width of 100%
the patch is axisymmetric and is simply an extension of the first hard-walled segment. With 5% the patch is a
narrow splice running all along the lined segment. The patch is centered on the upper half of the duct (i.e. it is
located between y ¼ p=2� a and y ¼ p=2þ a where a is the half-azimuthal width of the patch).

The mode amplitudes Aþmn at the duct inlet represent the source of sound that will propagate in the duct and
then radiate to the far field. These sound sources are generated by the fan blades and the outer guide vanes
that are located just upstream of the bypass duct. Two categories of sources are generally considered for
turbofan bypass ducts.

The first category comprises the tones generated by the fan blades and the rotor–stator interactions. These
tones are best described as a well-defined set of modes at particular frequencies and azimuthal orders
depending on the blade-passing frequency and the number of fan blades and guide vanes, see Ref. [26].
Therefore, this source is simply specified by the mode amplitudes Aþmn.
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Fig. 13. Schematic of (a) the outer wall and (b) the inner wall of the bypass duct.
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The second source of sound propagating in the bypass duct is the broadband noise generated by the
interaction between the turbulence and the fan blades and the guide vanes. This produces broadband noise
which is random and well distributed on the modes. To describe this type of noise, one has to consider the
mode amplitudes Aþmn as random variables and to specify their cross-correlation. A simple model commonly
used for broadband noise is that of uncorrelated modes with equal modal power distribution. In that case, the
correlation matrix is diagonal.

The problem at hand is completely specified when all the information described above is available: the
definition of the source Aþ, the scattering matrix D of the duct, the reflection coefficients R and the directivity
functions Dmn. It is then possible to calculate several results of interest such as the sound pressure level and
acoustic intensity, in the far field and at the duct exit plane [27].

5.1. In-duct results

We first focus on the transmission properties of the duct. In Fig. 14 the effect of the hard patch is assessed
by plotting the change in the total acoustic power due to the insertion of the hard patch. It is seen that the hard
patch introduces a significant penalty on the efficiency of the acoustic treatment and that this penalty varies
strongly with the patch aspect ratio. For the first radial modes, this effect is very important for modes with
high azimuthal orders with insertion losses as high as 50 dB for modes close to cut-off. For the second radial
modes, the modes with low azimuthal orders are the most affected by the hard patches with increases in total
transmitted power varying between 8.5 and 13.5 dB.

Results in Fig. 14 are concerned with the total transmitted power and as such do not provide any
information on the modal scattering introduced by the hard patch. Fig. 15 illustrates this modal scattering by
plotting the modal power at the exhaust when the mode (10, 1) is used as an input at the duct inlet. Two patch
widths, 5% and 25%, are shown. Although the incident mode is a second radial mode, the first radial modes
are dominant at the duct exhaust, this is so because the second radial modes are more efficiently absorbed by
the liner and the energy scattered onto the first radial modes is allowed to propagate with less attenuation. For
the thin patch with width 5% the incident mode is scattered rather uniformly across the range of cut-on
modes, but the modes m ¼ 10 are still dominant. For the wide patch, the incident mode is scattered
predominantly on modes whose azimuthal order is a multiple of 4. Having a width of 25% of the perimeter,
the patch transfers the incident energy into modes having a similar symmetry.
−20 −15 −10 −5 0 5 10 15 20
0

10

20

30

40

50

60

m

po
w

er
 in

se
rti

on
 lo

ss
 (d

B
)

−15 −10 −5 0 5 10 15
2

4

6

8

10

12

14

m

po
w

er
 in

se
rti

on
 lo

ss
 (d

B
)

Fig. 14. Insertion loss in the total transmitted power in dB due to the hard patch for (a) the first radial modes and for (b) the second radial

modes. The width of the patch is 10% (circles), 30% (squares), 50% (diamonds), 70% (crosses) and 90% (stars).
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Fig. 15. Modal power at the duct exhaust with an incident mode (10, 1). (a) Patch width 5% and (b) Patch width 25%. Dashed line: first

radial modes; solid line: second radial modes. The power of the incident mode is 120 dB.
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Fig. 16. Insertion loss of the hard patch for the total power radiated in the far field with the plane wave (�), the mode (10, 1) (�), the mode

(16, 0) (&) and broadband noise (	).
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5.2. Far-field results

The effect of the hard patch is also assessed in terms of the noise radiated to the far field. Fig. 16 shows the
change in the total acoustic power radiated to the far field due to the hard patch as a function of the patch
width. For the plane wave the effect of the patch is marginal, the insertion loss being consistently below 0.5 dB.
The liner having only a limited impact on the propagation of the plane wave, the presence of the hard patch
does not introduce any significant scattering of the plane wave. For broadband noise, the effect of the hard
patch is slightly larger but still below 1 dB and this is explained by the small fraction of the lined area removed
by the hard patch. With broadband noise the sound field can be considered as a diffuse field. In that case
sound absorption is directly proportional to the area covered by the liner and the modal scattering introduced
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Fig. 17. Insertion loss for the acoustic intensity in the far field with broadband noise. The patch width is (a) 10%, (b) 30%, (c) 50%,

(d) 70% and (e) 90%. In these graphs the intensity is plotted on the hemisphere of the rear arc viewed from some position downstream on

the axis.
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by the patch is of little importance. In contrast, the insertion loss for the mode (10, 1) is quite large with an
increase of more than 10 dB for the patches of widths 30% and 35%. Interestingly, the configurations with
narrow patches (5% and 10%) yield the smallest penalty with an increase of less than 4 dB of the total acoustic
power. In fact, for this incident mode, a narrow patch is preferable over an axisymmetric one. The patch also
has a large influence for the incident mode (16, 0) with an insertion loss above 10 dB for a 15% patch width. In
that case however an axisymmetric or wide patch is clearly preferable to a narrow patch.

For broadband noise, the influence of the hard patch on the noise radiated to the far field is illustrated in
more details in Fig. 17 by plotting the acoustic intensity in the rear arc. As shown in Fig. 16, for broadband
noise the patch geometry has little effect on the total power radiated to the far field. It has however a
significant impact on the directivity by modifying the distribution of acoustic energy in the far field. Wide
patches are found to induce small and rather uniform increases in the acoustic intensity in the far field. In
contrast, narrow patches increase significantly the acoustic intensity in the lower half of the directivity by as
much as 3.5 dB. Obviously these liner configurations are particularly detrimental in terms of ground impact.

6. Conclusions and comments

In this paper a mode-matching procedure has been presented which is based on computed eigensolutions for
ducts of arbitrary cross-section. The current matching procedure deals more accurately with impedance
discontinuities and gives better correspondence with more detailed FE transmission analyses than do
traditional mode-matching methods. The current approach is much less computationally demanding than full-
scale three-dimensional transmission analyses and lends itself to parametric studies and to preliminary design
evaluation of non-axisymmetric liner configurations.

Using the mode-matching method together with an analytic radiation model, the influence of non-
axisymmetric liners can be characterized in terms of noise radiation to the far field. For applications to bypass
duct problems, the radiation model includes the refraction of sound by the shear layer of the jet as well as the
scattering by the afterbody of the turbofan. The results obtained show that the influence of non-axisymmetric
liners on far-field directivity is far from simple and modal scattering at liner discontinuities can result in
complex behaviour in terms of noise radiation.

This hybrid ‘in-duct eigenmode þ analytic radiation’ model provides a practical tool for predicting far-field
radiation patterns for 3D lined bypass ducts at frequencies and flow conditions of practical interest and
including the effects of shear refraction in the external flow. It is currently being used as a basis for parametric
and optimization studies to reduce the ground impact of aft-radiated noise by 3D liner placement.
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